January 15, 2019
AI is certainly being used to attempt to solve many of the world’s big problems, such as health treatment, societal security, and the water shortage crisis. But Everest Group research suggests that 53 percent of enterprises do not – or are not able to – differentiate between AI and intelligent automation and what they can do to help them compete and grow. This trivialization of AI is both eye opening and frustrating.
While it’s true that automation of back-office services is one strong case for AI adoption, there are many more that can deliver considerable value to enterprises. Examples we’ve researched and written about in the past year include intelligent architecture, front-to-back office transformation, talent strategies, and AI in SDLC.
It’s been said that “audacious goals create progress.” So, how should enterprises think more creatively and aspirationally in their leverage of artificial intelligence to extract real value? There are three ingredients to success.
Think Beyond Efficiency
Enterprises are experimenting with AI-driven IT infrastructure, applications, and business services to enhance the operational efficiency of their internal operations. We have extensively written about how AI-led automation can drive 10-20 percent more savings over traditional models. But enterprises have far more to gain by experimenting with AI to fundamentally transform the entire landscape, including product design customer experience, employee engagement, and stakeholder management.
Think Beyond CX
Most enterprises are confusing putting bots in their contact center with AI adoption. We discussed in an earlier post that enterprises need to get over their CX fixation and drive an ecosystem experience with AI at the core. Our research suggests that while 63 percent of enterprises rank CX improvement as one of their top three expectations of artificial intelligence, only 43 percent put newer business model among their top three. We believe there are two factors behind this discouraging lack of aspiration: market hype-driven reality checks (which are largely untrue), and enterprises’ inability to truly grasp the power of AI.
Think Beyond Bots
While seemingly paradoxical, humans must be central to any AI adoption strategy. However, most enterprises believe bot adoption is core to their AI journey. Even within the “botsphere,” they narrow it down to Robotic Process Automation (RPA), which is just one small part of the broader ecosystem. At the same time, our research shows that 65 percent of enterprises believe that AI will not materially impact their employment numbers, and that bodes well for their realization of the importance of human involvement.
And, what do enterprises need to do?
Be Patient
Our research suggests that 84 percent of enterprises believe AI initiatives have a long gestation period, which undoubtedly leads to the business losing interest. However, given the nature of these technologies, enterprises need to become more patient in their ROI expectation from such initiatives. Though agility to drive quick business impact is welcome, a short-sighted approach may straight jacket initiatives to the lowest hanging fruits, where immediate ROI outweighs longer term business transformation.
Have Dedicated AI Teams
Enterprises need AI champions within each working unit, in appropriate size alignment. These champions should be tech savvy people who understand where the AI market is going, and are able to contextualize the impact to their business. This team needs to have evangelization experts in who can talk the language of technology as well as business.
Hold Technology Partners Accountable
Our research suggests that ~80 percent of enterprises believe their service partners lack the capabilities to truly leverage artificial intelligence for transformation. Most of the companies complained about the disconnect between the rapid development of AI technologies and the slowness of their service partners to adopt. Indeed, most of these partners sit on the fence waiting for the technologies to mature and become enterprise-grade. And by then, it is too late to help their clients gain first-mover advantage.
As AI technologies span their wings across different facets of our lives, enterprises will have to become more aspirational and demanding. They need to ask their service partners tough questions around AI initiatives. These questions need to go far beyond leveraging AI for automating mundane human tasks, and should focus on fundamentally transforming the business and even creating newer business models.
Let’s create audacious goals for artificial intelligence in enterprises.
What has been your experience adopting AI beyond mundane automation? Please share with me at [email protected].